First, let's take concrete examples of forms of our parabolic equations.
$y=4 x^{2}+x+2$
$y=7 x^{2}+x+2$
Next, set the two equations equal to each other.
$4 x^{2}+x+2=7 x^{2}+x+2$
Collect like terms.
$0=3 x^{2}$
Solve for x .
$x^{2}=0$
$\sqrt{x^{2}}=\sqrt{0}$
$x=0$
Now that we have a value for x , we can go back into both of our original equations and get compute a value for y.
$y=4(0)^{2}+0+2$
$y=0+0+2$
$y=2$
and
$y=7(0)^{2}+0+2$
$y=0+0+2$
$y=2$
Therefore, we now have the point of intersection between two points is $(0,2)$.
So we have proven there can be a point of intersection between two lines of the form $y=a x^{2}+x+2$. Now, lets see if we can find a general form of this solution to the intersection between all the different forms.

So take two general forms such as
$y=a x^{2}+x+2$
$y=b x^{2}+x+2$
Set the two equations equal to each other and begin to collect like terms.
$a x^{2}+x+2=b x^{2}+x+2$

$$
\begin{aligned}
& a x^{2}=b x^{2} \\
& 0=b x^{2}-a x^{2} \\
& 0=x^{2}(b-a) \\
& 0=x^{2} \\
& \sqrt{0}=\sqrt{x^{2}} \\
& 0=x
\end{aligned}
$$

Once again plug this x value into our original equations to find that $y=2$.
This shows us that for any value of " a " in our equation, the point of intersection is independent of this value because as we solve for x , the values a and b no longer factor into the solution.

